On the Relaxation of Some Types of Dirichlet Minimum Problems for Unbounded Functionals
Abstract
In this paper, considered a Borel function g on
taking its values in
, verifying some weak hypothesis of continuity, such that
and
is convex, we obtain an integral representation result for the lower semicontinuous envelope in the
- topology of the integral functional
, where(Error rendering LaTeX formula) only on suitable pin is of the boundary of
that lie, for example, on affine spaces orthogonal to
, for boundary values
satisfying suitable compatibility conditions and
is geometrically well situated respect to
. Then we apply this result to Dirichlet nunimum problems.
![\mathbf {R}<sup>n</sup>](https://358864.dpsou.asia/plugins/generic/latexRender/cache/d7c78e9b33185691aac4d1d40d7fb307.png)
![[0,+∈fty]](https://358864.dpsou.asia/plugins/generic/latexRender/cache/58a7e463b0398b5e001377bb1bf80ce4.png)
![(domg)<sup>o</sup> = \emptyset](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c3ada09ea9f6ec5ef53c7de24368a9ca.png)
![domg](https://358864.dpsou.asia/plugins/generic/latexRender/cache/affd0bf72eb4a3058be64f40836e4129.png)
![L<sup>1</sup>(ω)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/14f52104b62f9b9b6b2f89705c4de7b9.png)
![G<sup>0</sup>(u<sub>0</sub>,ω,u) = ∈top \limit _{ω}g(\nabla u)dx](https://358864.dpsou.asia/plugins/generic/latexRender/cache/deb5f77c39fb03a4088ee87186196067.png)
![ω](https://358864.dpsou.asia/plugins/generic/latexRender/cache/45bf03a575f6e81359314e906fb2bff3.png)
![aff(domg)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/b3dec74b1096c594e058da012c703310.png)
![u{0}](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c3a741e35b83c1bca98292208ec5350a.png)
![ω](https://358864.dpsou.asia/plugins/generic/latexRender/cache/45bf03a575f6e81359314e906fb2bff3.png)
![domg](https://358864.dpsou.asia/plugins/generic/latexRender/cache/affd0bf72eb4a3058be64f40836e4129.png)
DOI Code:
10.1285/i15900932v19n2p231
Classification:
49J45
Full Text: PDF