On the number of
-gons in finite projective planes
Abstract
Let
denote a finite projective plane of order
, and let
be the bipartite point-line incidence graph of
. For
, let
denote the number of cycles of length
in
. Are the numbers
the same for all
? We prove that this is the case for
by computing these numbers.
![\pi = \pi _q](https://358864.dpsou.asia/plugins/generic/latexRender/cache/e41bd19e5c9fa910658dc5b6796e6bcd.png)
![q](https://358864.dpsou.asia/plugins/generic/latexRender/cache/7694f4a66316e53c8cdd9d9954bd611d.png)
![G = Levi (\pi)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c0c9bcb384cdbe8c35ffb0d927dc583a.png)
![\pi](https://358864.dpsou.asia/plugins/generic/latexRender/cache/4f08e3dba63dc6d40b22952c7a9dac6d.png)
![k\ge 3](https://358864.dpsou.asia/plugins/generic/latexRender/cache/4bc468f103f6cf1232e2a76ec40f5ac8.png)
![c_{2k} (\pi)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/7779f3e18aea7988bed9f6f534ec875a.png)
![2k](https://358864.dpsou.asia/plugins/generic/latexRender/cache/26794630b04f565641b4c9576677fa61.png)
![G](https://358864.dpsou.asia/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![c_{2k} (\pi)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/7779f3e18aea7988bed9f6f534ec875a.png)
![\pi _q](https://358864.dpsou.asia/plugins/generic/latexRender/cache/41a31d4480cb4a4675e774b7ccdcf588.png)
![k=3,4,5,6](https://358864.dpsou.asia/plugins/generic/latexRender/cache/b9342fa2693533c605d2f154d3fff763.png)
DOI Code:
10.1285/i15900932v29n1supplp135
Keywords:
Projective planes; embeddings; k-cycles; Levi graphs
Projective planes; embeddings; k-cycles; Levi graphs
Full Text: PDF