Some sporadic translation planes of order ![11^2](https://358864.dpsou.asia/plugins/generic/latexRender/cache/52ffefbb382b34ca6f30aa326dd2ac57.png)
Abstract
In \cite{PK}, the authors constructed a translation plane
of order
arising from replacement of a sporadic chain
of reguli in a regular spread
of
. They also showed that two more non isomorphic translation planes, called
and
, arise respectively by derivation and double derivation in
which correspond to a further replacement of a regulus with its opposite regulus and a pair of reguli with their opposite reguli, respectively. In \cite{AL}, the authors proved that the translation complement of
contains a subgroup isomorphic to
. Here, the full collineation group of each of the planes
,
and
is determined.
![\Pi](https://358864.dpsou.asia/plugins/generic/latexRender/cache/d744af1210420bc542a6a63b938a5601.png)
![11^2](https://358864.dpsou.asia/plugins/generic/latexRender/cache/52ffefbb382b34ca6f30aa326dd2ac57.png)
![F'](https://358864.dpsou.asia/plugins/generic/latexRender/cache/5df7e7b0f9a17b149f36fec7c1142e01.png)
![F](https://358864.dpsou.asia/plugins/generic/latexRender/cache/800618943025315f869e4e1f09471012.png)
![PG(3,11)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/beed759539d312fef45f78dbef3eba14.png)
![\Pi_1](https://358864.dpsou.asia/plugins/generic/latexRender/cache/f4d0a8cb4386b8ff9304a093dc0017ad.png)
![\Pi_{13}](https://358864.dpsou.asia/plugins/generic/latexRender/cache/506705214dd27e1e5377e1a386046d55.png)
![F\setminus F'](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c85024e4b5fffb7d73808b7e7d06978b.png)
![\Pi](https://358864.dpsou.asia/plugins/generic/latexRender/cache/d744af1210420bc542a6a63b938a5601.png)
![\SL(2,5)](https://358864.dpsou.asia/plugins/generic/latexRender/cache/54e3ef313be4dba97f63632f95bde207.png)
![\Pi](https://358864.dpsou.asia/plugins/generic/latexRender/cache/d744af1210420bc542a6a63b938a5601.png)
![\Pi_1](https://358864.dpsou.asia/plugins/generic/latexRender/cache/f4d0a8cb4386b8ff9304a093dc0017ad.png)
![\Pi_{13}](https://358864.dpsou.asia/plugins/generic/latexRender/cache/506705214dd27e1e5377e1a386046d55.png)
DOI Code:
10.1285/i15900932v29n1supplp121
Keywords:
Translation plane; Replacement; Collineation; Chain of circles
Translation plane; Replacement; Collineation; Chain of circles
Full Text: PDF