Minimal Hopf-Galois Structures on Separable Field Extensions
Abstract
In Hopf-Galois theory, every
-Hopf-Galois structure on a field extension
gives rise to an injective map
from the set of
-sub-Hopf algebras of
into the intermediate fields of
. Recent papers on the failure of the surjectivity of
reveal that there exist many Hopf-Galois structures for which there are many more subfields than sub-Hopf algebras. In this paper we survey and illustrate group-theoretical methods to determine
-Hopf-Galois structures on finite separable extensions in the extreme situation when
has only two sub-Hopf algebras. This corresponds to the case when the lack of surjectivity is at its extreme.
![H](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c1d9f50f86825a1a2302ec2449c17196.png)
![K/k](https://358864.dpsou.asia/plugins/generic/latexRender/cache/8a6c661f8b5fecfa85d8904bcdf9e543.png)
![\mathcal{F}](https://358864.dpsou.asia/plugins/generic/latexRender/cache/a86b476d942a21c30901ddada8bc5f95.png)
![k](https://358864.dpsou.asia/plugins/generic/latexRender/cache/8ce4b16b22b58894aa86c421e8759df3.png)
![H](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c1d9f50f86825a1a2302ec2449c17196.png)
![K/k](https://358864.dpsou.asia/plugins/generic/latexRender/cache/8a6c661f8b5fecfa85d8904bcdf9e543.png)
![\mathcal{F}](https://358864.dpsou.asia/plugins/generic/latexRender/cache/a86b476d942a21c30901ddada8bc5f95.png)
![H](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c1d9f50f86825a1a2302ec2449c17196.png)
![H](https://358864.dpsou.asia/plugins/generic/latexRender/cache/c1d9f50f86825a1a2302ec2449c17196.png)
DOI Code:
10.1285/i15900932v41n1p55
Keywords:
Galois and Hopf-Galois field extensions; Galois correspondence; characteristically simple groups
Full Text: PDF