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Abstract. We prove the statement in the title: if a (finite) unital admits all translations and
contains no O’Nan configurations then the unital is classical, i.e., isomorphic to the Hermitian
unital of the same order.
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Introduction

We attempt a brief overview of the background for the present note. See
Section 1 for precise definitions.

In [13], Wilbrink has characterized the finite classical unitals (i.e., those
defined by a Hermitian form, see 1.3 below) among all finite unitals by three
elementary conditions (see 2.2 below). We show that these conditions are sat-
isfied if the unital in question admits all translations, and contains no O’Nan
configurations. Then Wilbrink’s characterization gives the result announced in
the title.

Unitals admitting all translations have been studied in [4]. Using the clas-
sification of finite simple groups, it is proved in that paper that such unitals
are classical. Our present treatment is much more elementary, but imposes the
fairly strong hypothesis that no O’Nan configurations appear in the unital. Us-
ing translations (assumed to exist by our second strong hypothesis) we then
check Wilbrink’s conditions (see 2.2), and obtain the result.

It has been conjectured (see [9, p. 102], [1, p. 87]) that finite classical uni-
tals are characterized by the absence of O’Nan configurations. To the author’s
knowledge, this conjecture has not been proved yet. In many of the known
non-classical unitals, O’Nan configurations have been found.
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1 Unitals, translations

Definitions 1.1. Throughout the present paper, let U = (P,B,∈) be a finite
unital of order q; i.e., the set P of points has size q3 + 1 with q > 1, the set B of
blocks consists of subsets of size q+1 in P , and each 2-element subset {x, y} ⊂ P
is contained in exactly one block (called the joining block, and denoted by x∨y).
In other words, U is a 2-(q3 + 1, q + 1, 1)-design.

An O’Nan configuration is a set of 4 mutually intersecting blocks together
with 6 points, such that each one of the 6 points lies on exactly two of these
blocks. See Figure 1. (In axiomatic projective geometry, that configuration is
called Veblen-Young configuration.)

Figure 1: An O’Nan configuration.

A translation (with center c) of the unital U is an automorphism of U that
fixes a point c and every block through c.

Lemma 1.2 ([4, Thm. 1.3]). For each point c of U , the set T[c] of all translations
with center c forms a subgroup of Aut(U) that acts semi-regularly on P r {c}.

In particular, the group T[c] induces a semi-regular group on B r {c}, for
each block B containing c. We say that U admits all translations with center c
if T[c] is transitive on B r {c}. (This is equivalent to |T[c]| = q.) If U admits all
translations with center c, for each c ∈ P , we say that U admits all translations.
In [4], it has been proved that each unital admitting all translations is isomorphic
to the classical unital of the same order (see 1.3 below). That proof uses the
classification of finite simple groups.

There do exist examples of unitals admitting all translations for many (but
not all) centers (see [5], [7]), and unitals admitting all translations for just one
single center (see [5, Sec. 5]). At least some of those unitals do contain O’Nan
configurations (e.g., see [6, 6.7, 6.10]).

Examples 1.3. Let E|F be a separable quadratic field extension, and let σ : s 7→
s̄ denote the generator of the Galois group. There is an (essentially unique)
isotropic non-degenerate σ-Hermitian form h on E3. The classical unital HE|F
(cp. [2, p. 104], [1, 2.1, 2.2, see also p. 29]) has the set PE|F of all one-dimensional
isotropic subspaces of E3 as point set, the blocks are the intersections of PE|F
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with lines that meet that set in more than one point. Up to a choice of basis, the
Hermitian form h maps (x, y) ∈ E3 × E3 with x = (x0, x1, x2), y = (y0, y1, y2)
to x0y2 − x1y1 + x2y0.

We note that the classical unital UE|F does not contain any O’Nan configu-
rations. (See [8, Proposition, p. 507] for the finite case, and [3, 2.2]).

The automorphism group Aut(HE|F ) of the classical unital HE|F is the
group PΓU(E3, h) induced by the group ΓU(E3, h) of all semi-similitudes of the
form h. (See [8] for the finite case, and [12] for the general case; cp. [11, 6.1,
5.6].) If the form is given as above, the subgroup

Ξ :=


1 x z

0 1 x̄
0 0 1

∣∣∣∣∣∣ x, z ∈ E, z + z̄ = xx̄


is contained in the stabilizer of the point E(0, 0, 1) ∈ PE|F , and

T[E(0,0,1)] =


1 0 z

0 1 0
0 0 1

∣∣∣∣∣∣ z ∈ E, z + z̄ = 0


is the group of translations with center E(0, 0, 1). The group Ξ, together with
any element γ ∈ PSU(E3, h) that moves E(0, 0, 1), shows that PSU(E3, h) ≤
Aut(HE|F ) acts doubly transitively on PE|F . For instance, we could use the

element induced by
(

0 0 1
0 −1 0
1 0 0

)
∈ SU(E3, h).

In particular, if E is finite of square order q2 then there is a unique subfield F
of order q. The involution σ is the appropriate power of the Frobenius endo-
morphism, it maps s ∈ E to s̄ = sq. Then HE|F ∼= HFq2 |Fq is a unital of order q;

the groups considered above show that this unital admits all translations.

2 Wilbrink’s conditions

Definitions 2.1. Consider B ∈ B and x ∈ P r B. A block B′ with x /∈ B′ is
called x-parallel to B if B′ meets each block joining x with a point on B.

If U does not contain any O’Nan configurations then there exists at most
one block through a given point y 6= x that is x-parallel to a given block B.

If τ ∈ T[x] is a translation with center x then the image Bτ of B under τ is
x-parallel to B.
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Theorem 2.2 ([13]). Let U = (P,B,∈) be a unital of order q satisfying the
following conditions.

(I) There are no O’Nan configurations in U .

(II) Consider L ∈ B and x, y ∈ P such that x /∈ L and (x ∨ y) ∩B 6= ∅. Then
there exists an x-parallel block L through y.

(III) Consider three blocks M0,M1,M2 through a common point x, and points
yi, zi ∈ Mi r {x} for i ∈ {0, 1, 2}. If z0 ∨ zi is x-parallel to y0 ∨ yi for
i ∈ {1, 2} then z1 ∨ z2 is x-parallel to y1 ∨ y2.

Then U is isomorphic to the classical unital of order q.

x
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y2

z0

z1

z2

Y1
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Z1

Z2
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M1

M2

Figure 2: Wilbrink’s condition (III)

Theorem 2.3. Let U = (P,B,∈) be a unital of order q admitting all transla-
tions, and with no O’Nan configurations. Then U is isomorphic to the classical
unital of order q.

Proof. It remains to show that U satisfies Wilbrink’s conditions (II), (III),
see 2.2.

Consider B ∈ B and x ∈ P r B. If x ∨ y meets B in a point w, say, then
our assumptions secure the existence of a translation τ ∈ T[x] mapping w to y.
Clearly the image B′ of B under τ meets each block through x that also meets B.
So B′ is x-parallel to B, and condition (II) is verified.

Now consider three blocks M0,M1,M2 through x, and points yi, zi ∈ Mi r
{x} for i ∈ {0, 1, 2} (see Figure 2). Let τ be the translation with center x that
maps y0 to z0. For i ∈ {1, 2}, the image Zi of Yi := y0 ∨ yi under τ contains z0,
and meets each block through x that meets Yi. So Zi is x-parallel to Yi. By
the absence of O’Nan configurations, we know that the x-parallel block to Yi
through z0 is unique, and infer Zi = z0 ∨ zi. Thus zi is the image of yi under τ ,
and z1 ∨ z2 is the image of y1 ∨ y2 under τ . This yields that z1 ∨ z2 is x-parallel
to y1 ∨ y2, and condition (III) is verified. QED

An application of the present theorem is given in [10, 6.4].
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